Temperature and humidity mapping of cleanrooms

Presented by Bernie Prendergast
11th August 2015
Temperature & Humidity mapping of cleanrooms

Why are we discussing this?

Where is it required?

When should you do it?

What testing should you do?

What do we do with the data?
Temperature & Humidity mapping of cleanrooms

So, why should we consider mapping cleanrooms?
Why should we consider mapping cleanrooms?

Historically, mapping of cleanrooms has not been performed beyond a single point temperature or humidity verification during qualification because ...
Why should we consider mapping cleanrooms?

Historically, mapping of cleanrooms has not been performed beyond a single point temperature or humidity verification during qualification because ...

- Room temperature is rarely a CPP
Why should we consider mapping cleanrooms?

Historically, mapping of cleanrooms has not been performed beyond a single point temperature or humidity verification during qualification because ...

- Room temperature is rarely a CPP
- Room humidity is ‘sometimes’ a CPP
Why should we consider mapping cleanrooms?

Historically, mapping of cleanrooms has not been performed beyond a single point temperature or humidity verification during qualification because ...

- Room temperature is rarely a CPP
- Room humidity is ‘sometimes’ a CPP

Insofar as CPPs go, these room environmental parameters are probably considered “less critical”.
Why should we consider mapping cleanrooms?

However, if these parameters are CPPs ...

CPPs should be fully qualified/validated, and for HVAC parameters this should include mapping

- If room temperature and/or humidity is critical to control of product quality, mapping is an indispensable part of demonstrating the validity of the controls
Why should we consider mapping cleanrooms?

But what about when they aren’t CPPs?

• GMP is a little vague on requirements:

3.12. Production areas should be effectively ventilated, with air control facilities (including temperature and, where necessary, humidity and filtration) appropriate both to the products handled, to the operations undertaken within them and to the external environment.

• So, temperature may not always be a CPP, but in accordance with 3.12, it is always GMP critical and needs to be controlled!

• Humidity does not need to be considered GMP critical except “where necessary” (where it is a CPP) and therefore does not always need to be controlled
Why should we consider mapping cleanrooms?

The expectations of what “controlled” means has evolved over time

• For most facilities, the expectation now is that HVAC temperature and humidity is controlled through a BMS and that the system is monitored (to verify the control) through a validated EMS/FMS

• The outputs of the EMS are typically Quality reviewed regularly to confirm that the GMP critical data is maintained within limits
Why should we consider mapping cleanrooms?

BUT, ...

• EMS data is typically generated from a single point sensor.
Why should we consider mapping cleanrooms?

BUT, ...

• EMS data is typically generated from a single point sensor.

• Regulatory inspections are increasingly asking for justification for EMS (or manual) sensor locations.
Why should we consider mapping cleanrooms?

BUT, ...

• EMS data is typically generated from a single point sensor.

• Regulatory inspections are increasingly asking for justification for EMS (or manual) sensor locations

• EMS installers are rarely experts in appropriate locating of sensors
Why should we consider mapping cleanrooms?

Take home message ...

Room mapping is the most effective way to justify sensor locations, when used in conjunction with a risk based assessment.
Temperature & Humidity mapping of cleanrooms

So, where should you perform cleanroom mapping?
Where should you perform cleanroom mapping?

Wherever temperature sensitive material is ‘stored’ in cleanrooms (and the cleanroom is the primary environmental control), e.g.

- Consumable stores
- Staging rooms
- Any other classified area where temperature sensitive material is held for an extended duration before, during or after processing.
Where should you perform cleanroom mapping?

Other clean areas where temperature / humidity is a CPP; for e.g.

- Processing of highly temperature sensitive materials, requiring tight control during manufacture
- Processing of humidity sensitive materials (many OSD products)
- Drying rooms / cabinets
- Pre-conditioning rooms (eg EtO sterilization)
Where should you perform cleanroom mapping?

Where temperature is not a CPP, consider other production areas where temperature excursion is undesirable or the impact needs to be assessed:

- Base on risk assessment
- Consider the implications on product of excessive temperature excursion (e.g. 27°C, 15°C) in processing rooms
- Intra-room temperature variations of up to 5°C are not improbable where heating/cooling sources are present
Temperature & Humidity mapping of cleanrooms

So, when should you perform cleanroom mapping?
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider ...
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider ...

- Prior to facility start-up during initial cleanroom qualification
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider …

- Prior to facility start-up during initial cleanroom qualification
- If parameter is a CPP: 1 to 3 years (consider risk of sensitivity of product(s), how far outside ambient, system capability, etc.)
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider ...

• Prior to facility start-up during initial cleanroom qualification

• If parameter is a CPP: 1 to 3 years (consider risk of sensitivity of product(s), how far outside ambient, system capability, etc.)

• If parameter is not a CPP: 3 to 5 years
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider ...

• Prior to facility start-up during initial cleanroom qualification

• If parameter is a CPP: 1 to 3 years (consider risk of sensitivity of product(s), how far outside ambient, system capability, etc.)

• If parameter is not a CPP: 3 to 5 years

• Whenever significant modifications to the system or the room have been made
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider …

- Prior to facility start-up during initial cleanroom qualification
- If parameter is a CPP: 1 to 3 years (consider risk of sensitivity of product(s), how far outside ambient, system capability, etc.)
- If parameter is not a CPP: 3 to 5 years
- Whenever significant modifications to the system or the room have been made
- Whenever analysis shows unexplained variability outside normal operating limits
When should you perform mapping of cleanrooms?

Ultimately, and as always, this is risk based. But consider ...

- Prior to facility start-up during initial cleanroom qualification
- If parameter **is a CPP**: 1 to 3 years (consider risk of sensitivity of product(s), how far outside ambient, system capability, etc.)
- If parameter **is not a CPP**: 3 to 5 years
- Whenever significant modifications to the system or the room have been made
- Whenever analysis shows unexplained variability outside normal operating limits
- Seasonal variation
Temperature & Humidity mapping of cleanrooms

So, what testing is required for effective mapping?
What testing is required for effective mapping?

The room should be gridded in 3D. Typical rooms will require between 15-25 sensors. Product critical locations should be assessed.
Typical mapping arrangement

From WHO Technical Supplement to TRS 961, 2011
What testing is required for effective mapping?

The room should be gridded in 3D. Typical rooms will require between 15-25 sensors. Product critical locations should be assessed.

Sensor numbers and locations should be carefully selected and justified in protocols (references to follow). Methodology should be documented in procedures.
What testing is required for effective mapping?

The room should be gridded in 3D. Typical rooms will require between 15-25 sensors. Product critical locations should be assessed.

Sensor numbers and locations should be carefully selected and justified in protocols (references to follow). Methodology should be documented in procedures.

Mapping should be typically be hours. Lower times may be justifiable in low risk areas. Number of data points TBD.
What testing is required for effective mapping?

The room should be gridded in 3D. Typical rooms will require between 15-25 sensors. Product critical locations should be assessed.

Sensor numbers and locations should be carefully selected and justified in protocols (references to follow). Methodology should be documented in procedures.

Mapping should be typically be hours. Lower times may be justifiable in low risk areas. Number of data points TBD.

Humidity requirements should basically follow temperature, although it may be justifiable to use fewer sensors, especially if used in conjunction with temperature mapping.
What testing is required for effective mapping?

Probe locations should consider how the map may be affected by items such as:

- The location of the process / product
- The location of air supply registers (can be hot or cold spots)
- Heat sources (e.g., autoclaves, bag sealers, other large equipment)
- Cold sources (cooling systems)
- Areas of high / low airflow
- Areas of high traffic, etc...
What testing is required for effective mapping?

Temperature mapping of storage areas

ISPE Concept Paper on Temperature Controlled Storage Chambers, 2012 (currently ISPE are drafting a GPG based on this paper)

Qualification of temperature controlled storage areas

PIC/S PE011-1 Guide to Good Distribution Practice (requires mapping requirements to be determined by risk assessment)
Temperature & Humidity mapping of cleanrooms

So, what do we do with the data?
What do we do with the data?

Analyse the data:

- Calculate mean / high / low results in each location at each time point
- Document the internal temperature / RH variations observed within the room
What do we do with the data?

Assess the data:

• Use the data analysis to assess the overall temperature / RH stability of the mapped space in relation to the stated acceptance criteria

• Assess the overall thermal stability of the space during the study period with specific reference to the high and low temperatures experienced

• Assess consistent and inconsistent temperature / RH variations, and fluctuations, within the space in terms of their potential impact on processes
What do we do with the data?

Make recommendations:

- Based on the observed temperature / RH fluctuations of mapped locations within the space, make recommendations about suitability of areas for active processing
- Based on the observed temperature / RH fluctuations of mapped locations within the space, provide recommendations or justification for the location of the temperature/RH sensor(s) used for routine temperature monitoring and the control sensors used to activate the heating and cooling systems.
Thank you for your time.
Questions?

Bernie Prendergast
Senior Consultant

Bernie.Prendergast@pharmout.net
www.pharmout.net