White Paper

New changes to cleanroom & clean air device classifications: ISO 14644 – 1 & 2

This white paper describes the changes outlined in the Draft International Standard (DIS) editions of ISO 14644-1 and ISO 14644-2. When the standards are published towards the end of 2012, changes will have to be made to the way every cleanroom and clean air device is specified, tested, qualified, and classified.
New changes to cleanroom and clean air device classification: ISO 14644 – 1 & 2

Reasons for the change

On the 2nd May 2011, the draft revisions of the two most important cleanroom standards were approved with comments. This white paper provides a 'heads-up' on the proposed changes to:


All classified cleanrooms and clean air devices will be impacted when the standards are published in 2012.

ISO 14644-1:1999

ISO Technical Committee 209 has been working on the revision of the basic airborne cleanliness classification standard for the last 5 years. The ISO community voted in favour of the revision to update and improve the standard specifically to:

- Simplify the classification process, and if possible, remove the need to evaluate the 95% upper confidence limit (UCL) for low sample location numbers (currently required for 2-9 locations).
- Review the classification procedure and make it more applicable to rooms in operation. In this situation, the contamination isn’t expected to be evenly distributed, an assumption the current statistical approach makes.
- Generally, update the standard as required to current thinking and industry requirements.
- Avoid any radical change to the principles of the current ISO cleanliness classes 1-9.

ISO 14644-2:2000

The same technical committee has also been working on the revision of the ISO 14644-2:2000 in conjunction with the revision of ISO 14644-1. The ISO community voted in favour of the revision to improve the standard to:

- Simplify and clarify requirements and guidance tables that specify frequency of testing and monitoring of cleanrooms used to demonstrate continued compliance with the cleanliness classification.
- Refine how these intervals may be extended, provided that automated monitoring systems show the cleanroom is under control.
- Provide new guidance on aspects that should be considered when configuring a monitoring system for a cleanroom.
Details of the changes

Classification limits in ISO 14644-1

Slight modifications have been made to the specification limits for some of the 9 ISO cleanroom classifications, as indicated in the table below.

Table1: The basic classification table proposed in ISO (DIS) 14644-1:2010. Concentration limits in brackets indicate requirements from ISO 14644-1: 1999 that have been removed in the new version.

<table>
<thead>
<tr>
<th>ISO Classification Number (N)</th>
<th>Maximum concentration limits (particles/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1 µm</td>
</tr>
<tr>
<td>ISO Class 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ISO Class 2</td>
<td>100</td>
</tr>
<tr>
<td>ISO Class 3</td>
<td>1 000</td>
</tr>
<tr>
<td>ISO Class 4</td>
<td>10 000</td>
</tr>
<tr>
<td>ISO Class 5</td>
<td>100 000</td>
</tr>
<tr>
<td>ISO Class 6</td>
<td>1 000 000</td>
</tr>
<tr>
<td>ISO Class 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>352 000</td>
</tr>
<tr>
<td>ISO Class 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 520 000</td>
</tr>
<tr>
<td>ISO Class 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 200 000</td>
</tr>
</tbody>
</table>

Of particular note for the pharmaceutical and related industries is the removal of 5.0µm particle specification limits for ISO 5 areas. While this is a significant shift and one which may have future ramifications for these industries, manufacturers need to be aware that the current PIC/S and EU GMP codes still require assessment of this particle size for both classification and monitoring events.

Classification methodology

In order to achieve the goals of the ISO community, the significant changes with ISO 14644-1 are related to revision of the classification method, summarized as follows.

Number of sample locations

- A new table has been developed for the determination of the number of sample locations, replacing “N-L = √A” from the 1999 version of the standard. For all room sizes above 6m², the new table results in an increase in required sample locations.
- The 1999 standard required that sample sizes of 2-9 include a confidence limit calculation. The new table has been pre-calculated to eliminate the need for this calculation. The new method, when successfully applied, assures that at least 90% of the room is in compliant at a 95% confidence limit.
White Paper
New changes to cleanroom and clean air device classification: ISO 14644 – 1 & 2

Table 2: Number of sample locations required with respect to cleanroom area.

<table>
<thead>
<tr>
<th>Area (m²) Less than or equal to</th>
<th>Min number of sample locations</th>
<th>Area (m²) Less than or equal to</th>
<th>Min number of sample locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>72</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>76</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>104</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>108</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>116</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>148</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>156</td>
<td>20</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>192</td>
<td>21</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
<td>232</td>
<td>22</td>
</tr>
<tr>
<td>52</td>
<td>10</td>
<td>276</td>
<td>23</td>
</tr>
<tr>
<td>56</td>
<td>11</td>
<td>352</td>
<td>24</td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>436</td>
<td>25</td>
</tr>
<tr>
<td>68</td>
<td>13</td>
<td>500</td>
<td>26</td>
</tr>
</tbody>
</table>

Semi-random sampling
- Like the 1999 standard, the draft standard requires the room to be divided into the relevant number of sub-divisions. However, the new standard requires that measurements be taken at random from within each sub-division, and that location should be newly randomized at each classification. The 1999 standard allowed the sample locations to be the same at each classification.
- The standard also allows for locations, identified as high risk, which may be sampled in addition to the randomized sample locations.

Acceptance Criterion
Classification according to the 1999 standard passed if the average of all the samples met the specification limits. However, the draft standard requires that all samples meet the limits.

Parameters have been chosen intending to obtain a reasonable balance between the theoretical formulation of the sampling process and practical experience, including the general practice applied with the 1999 standard.
White Paper
New changes to cleanroom and clean air device classification: ISO 14644 – 1 & 2

The effect of these three changes provides a risk based approach which is statistically superior to the method in the 1999 standard. While it may require a higher level of sampling, it is also simplified and easier to understand than the previous version.

Changes to ISO 14644-2
The changes to ISO 14644-2 include some new requirements, but largely update the standard to conform to current industry best practice. The following key changes are noted.

Requirements
- The draft standard clearly identifies that there is a difference between routine strategic testing and real-time monitoring, which was absent in the 2000 version.
- Formal classification testing must be undertaken annually, as a minimum - except where real-time air cleanliness monitoring and room pressure differential demonstrate ongoing control AND where industry regulation allows longer period (that is, not within the pharmaceutical or related industries).

New guidance annexes
- The draft standard includes new guidance annexes on monitoring which acknowledge and allow for the use of permanent fixed systems as well as portable instruments.
- There is a new guidance annex which lists the aspects that should be considered when specifying a real-time particle monitoring system. The scope of this guidance ranges from identification of critical sample locations, through to how the data collected will be evaluated and reported, and the acceptance/rejection criteria. A similar style of guidance is given for room pressure differential monitoring systems.
- A separate new annex provides guidance on monitoring air volume or air velocity in air treatment systems.

How does this affect you?
Manufacturers who perform their own classification will need to become familiar with the new standard, as existing methodology will no longer be sufficient to comply with the classification requirements.

Where a manufacturer uses a third party for classification, it is still the manufacturer’s responsibility to ensure that classification work is conducted according to the current applicable standard. As a result, it is important to work together with contracted parties to ensure that the current standards are applied.

Manufacturers should also review quality management systems, as updates to policies, procedures and specifications may be required as a result of the changes.
White Paper
New changes to cleanroom and clean air device classification: ISO 14644 – 1 & 2

References

About PharmOut

PharmOut is a professional consultancy offering product registration, engineering, validation and regulatory compliance solutions to the Medical Device, Pharmaceutical and Veterinary drug manufacturing industry from concept development, feasibility studies, scale up, engineering design, project management to the final product regulatory approval and GMP compliance certification.

How PharmOut can help

We offer the following range of services:

ISO, GMP & APVMA compliance consulting

Policies, SOP, and Forms. We can also help you obtain approval from the following international regulatory authorities (APVMA, FDA, MHRA, and TGA).

Engineering

Our experienced industry engineers can develop concept and detailed designs, around your production process ensuring full GMP compliance by careful project management and verification (validation) to ensure that the exacting GEP standards are met.

GMP Compliance

We can visit your site before or after a FDA or TGA GMP audit to assess and improve your quality management systems and/or validation documentation, business processes and physical operations.

Quality Management Systems

We can help you create a Quality Management System from scratch, or bring your current system into compliance.

Technical Document Writing

We can help you write procedures and work instructions that your staff will actually use and can follow.

ISO & GMP consulting

We can provide practical recommendations and advice on the implementation of ISO 9001 for Pharmaceuticals or ISO 13485 for Medical Device Quality Management Systems, Policies, SOP, and Forms. We can also help you obtain approval from the following international regulatory authorities (FDA, MHRA, and TGA). This includes Part 11 and Annex 11 compliance to FDA and TGA requirements.

Training

We run on-site or in-the-city classroom training on GLP, GMP compliance, validation and documentation writing. We also develop e-learning modules on topics such as Good Record Keeping that you can use for your ongoing training needs.

Validation

Our validation engineers / specialists can write validation plans, specifications and qualification protocols for i.e. cleaning validation, equipment validation, computers systems validation, analytical method validation or process validation.